像做蛋糕一样,打通建筑千亿脱碳的“最后一公里”_qy288千亿国际网址 像做蛋糕一样,打通建筑千亿脱碳的“最后一公里”_qy288千亿国际网址

千亿体育app

立即打开
像做蛋糕一样,打通建筑千亿脱碳的“最后一公里”

像做蛋糕一样,打通建筑千亿脱碳的“最后一公里”

Katherine Dunn 2021年02月20日
为了建造真正低碳的建筑,我们必须采用诸如氢气、碳捕捉等突破性科技,并探索混凝土、工业产品,甚至房屋本身的新设计方式。

它被称作脱碳的“最后一公里”。

当前,全球各大公司和各国都在勾勒自家的路线图,以期待在2050年之前实现净零排放。在这一巨大的转变中,有一些来得较为直接,例如汽车的电动化,清洁能源并入电网。

然而说到建筑,工程师和决策者碰到了一个难题:即便是覆盖着太阳能电板的房屋依然可能含有混凝土和钢材,而这两大产业就排放问题来说尤为棘手。研究人员称,为了建造真正低碳的建筑,我们必须采用诸如氢气、碳捕捉等突破性科技,并探索混凝土、工业产品,甚至房屋本身的新设计方式。

然而其回报是相当高的。国际能源署(International Energy Agency)称,如果计算消耗的能源以及建造过程,各类建筑贡献的碳排放占到了全球总量的40%。伦敦大学学院巴特利特建设与项目管理学院(University College London’s Bartlett School of Construction and Project Management)的气候变化体育学教授关大博(音译)指出,如果要修建一栋真正零碳房屋、千亿楼或商场,其建造和维护所涉及的每一个千亿都必须首实现脱碳。

关大博说,建造活动“会调动整个体育供应链。供应链的排放量非常之高。”

“就像做蛋糕一样”

麻省理工学院(MIT)混凝土可持续性中心(Concrete Sustainability Hub)的qy113vip总监杰里米•格里高利说,提到混凝土,“唯一用量超过人力的便是水。”

混凝土的核心便是水泥,它是一种关键的粘合剂,能够将沙和水转变为全球处处可见的材料。国际能源署称,2019年全球的水泥产量达到了41亿吨,而其本身也极难脱碳。水泥必须在极高的温度下才可以形成,而且制作水泥所需的化学反应天然就会生成二氧化碳。格里高利指出,计算上述这些碳排放,水泥贡献的排放量高达全球总量的8%。

由于我们很难使用可再生能源来产生超高温所需的能量密度,因此真正的低碳水泥可能得依靠碳的捕捉、储存和利用,这样便能够防止二氧化碳被排入大气,我们可以通过将其注入地下,也有可能通过将其注入混凝土本身来实现这一点。

格里高利说,还有一种方法也是可行的,那就是减少水泥用量,甚至是替换混凝土中的水泥。这些方案已然存在:古罗马人使用火山灰作为粘合剂来制作混凝土。然而,我们也能够使用很多种废弃物来替代,包括燃煤电厂的副产品粉煤灰。有一些配方可以让碳密度较传统水泥大幅降低70%,而且成品的功效与普通水泥无异。

格里高利说:“就像做蛋糕一样,你能够使用全麦面粉。它依然看起来是蛋糕,只是味道略有不同。”

温室气体来源(在人类活动中,温室气体排放最大的来源是制造业。水泥千亿是其中的主要贡献者。)图片来源:Rhodium Group

减排,再利用,回收

钢铁千亿碰到的一些问题与混凝土类似。主要来讲,钢铁千亿需要高温,而且这一过程也会释放一些二氧化碳,只不过排放量可以少一些。钢铁有一个优势,它的回收更方便,但这一点也面临着挑战。位于威尔士的斯旺西大学(University of Swansea)未来钢铁制造研究中心(Future Steel Manufacturing Research Hub)“Sustain”项目的项目经理理查德•库里说,回收的废铁数量满足不了需求,而且废铁的再加工需要耗能。

从物流方面来讲,回收是一件具有挑战性的事情,而且会降低金属的品质。与混凝土千亿一样,钢铁千亿最可行的解决方案也是碳的捕捉、利用和存储,哪怕这些技术还没有成为商业主流。

Sustain项目的副主任卡梅隆•普利戴尔-皮尔斯称,我们还应该采用更好的设计,不管是建筑还是基础设施,是的,还包括电动汽车,从而让拆卸变得更加便捷,这样,人们便可获取零部件并进行回收。

他表示,另一个解决方案就是再利用。

他说:“我们当前正在非常仔细研究的一件事情是,我们对某种产品能够了解到什么程度,以及跟踪钢厂在某个特定时间点会千亿哪种产品,然后这种产品在其生命周期中都会经历什么变化。”

与回收不同的是,此举具有一个重大优势:基本上没有任何二氧化碳排放。

冬暖夏凉

说到设计,另一个潜在的解决方案可谓是近在咫尺:从我们以前的建筑中吸取灵感。

耶鲁大学建筑生态系统中心(Yale University’s Center for Ecosystems in Architecture)的创始主任安娜•戴森说,例如,新英格兰的传统房屋都拥有南向窗户,这样便可以最大化地引入阳光,并减少冬天的黑暗时长。

她还表示,全球各地的房屋在传统上都会按照最适合气候的方式进行设计和建造,然而,“在20世纪期间,随着建筑越发依赖于廉价的化石燃料,人们在房屋的方位以及气候适配方面并未设定十分严格的要求。”

此外,为了管理室内温度,房屋的形状和尺寸都会匹配当地的气候。在潮湿地区,房屋设计会采用充足的通风和大坡度屋顶来提升空气的流通。在白天炎热夜晚寒冷的干旱地区,房屋较为宽敞而且都是浅色,以反射热量。这些原则,以及生物可降解材料的使用,例如木料、稻草、椰子壳和竹子,成为了戴森这类建筑师如今重新审视的理念。

当然,这里并没有一劳永逸的解决办法。戴森指出,房屋依然需要能源来照明和供热,而且首选清洁能源。目前我们面临的挑战是,不仅要让房屋能够适应未来100年的发展,同时还得寻找各种方式来改进那些已经矗立了一个世纪的老房子。

戴森说:“我们还有很长的路要走,但我们在设计方面还有很多文章可做。”(财富中文网)

译者:冯丰

审校:夏林

它被称作脱碳的“最后一公里”。

当前,全球各大公司和各国都在勾勒自家的路线图,以期待在2050年之前实现净零排放。在这一巨大的转变中,有一些来得较为直接,例如汽车的电动化,清洁能源并入电网。

然而说到建筑,工程师和决策者碰到了一个难题:即便是覆盖着太阳能电板的房屋依然可能含有混凝土和钢材,而这两大产业就排放问题来说尤为棘手。研究人员称,为了建造真正低碳的建筑,我们必须采用诸如氢气、碳捕捉等突破性科技,并探索混凝土、工业产品,甚至房屋本身的新设计方式。

然而其回报是相当高的。国际能源署(International Energy Agency)称,如果计算消耗的能源以及建造过程,各类建筑贡献的碳排放占到了全球总量的40%。伦敦大学学院巴特利特建设与项目管理学院(University College London’s Bartlett School of Construction and Project Management)的气候变化体育学教授关大博(音译)指出,如果要修建一栋真正零碳房屋、千亿楼或商场,其建造和维护所涉及的每一个千亿都必须首实现脱碳。

关大博说,建造活动“会调动整个体育供应链。供应链的排放量非常之高。”

“就像做蛋糕一样”

麻省理工学院(MIT)混凝土可持续性中心(Concrete Sustainability Hub)的qy113vip总监杰里米•格里高利说,提到混凝土,“唯一用量超过人力的便是水。”

混凝土的核心便是水泥,它是一种关键的粘合剂,能够将沙和水转变为全球处处可见的材料。国际能源署称,2019年全球的水泥产量达到了41亿吨,而其本身也极难脱碳。水泥必须在极高的温度下才可以形成,而且制作水泥所需的化学反应天然就会生成二氧化碳。格里高利指出,计算上述这些碳排放,水泥贡献的排放量高达全球总量的8%。

由于我们很难使用可再生能源来产生超高温所需的能量密度,因此真正的低碳水泥可能得依靠碳的捕捉、储存和利用,这样便能够防止二氧化碳被排入大气,我们可以通过将其注入地下,也有可能通过将其注入混凝土本身来实现这一点。

格里高利说,还有一种方法也是可行的,那就是减少水泥用量,甚至是替换混凝土中的水泥。这些方案已然存在:古罗马人使用火山灰作为粘合剂来制作混凝土。然而,我们也能够使用很多种废弃物来替代,包括燃煤电厂的副产品粉煤灰。有一些配方可以让碳密度较传统水泥大幅降低70%,而且成品的功效与普通水泥无异。

格里高利说:“就像做蛋糕一样,你能够使用全麦面粉。它依然看起来是蛋糕,只是味道略有不同。”

减排,再利用,回收

钢铁千亿碰到的一些问题与混凝土类似。主要来讲,钢铁千亿需要高温,而且这一过程也会释放一些二氧化碳,只不过排放量可以少一些。钢铁有一个优势,它的回收更方便,但这一点也面临着挑战。位于威尔士的斯旺西大学(University of Swansea)未来钢铁制造研究中心(Future Steel Manufacturing Research Hub)“Sustain”项目的项目经理理查德•库里说,回收的废铁数量满足不了需求,而且废铁的再加工需要耗能。

从物流方面来讲,回收是一件具有挑战性的事情,而且会降低金属的品质。与混凝土千亿一样,钢铁千亿最可行的解决方案也是碳的捕捉、利用和存储,哪怕这些技术还没有成为商业主流。

Sustain项目的副主任卡梅隆•普利戴尔-皮尔斯称,我们还应该采用更好的设计,不管是建筑还是基础设施,是的,还包括电动汽车,从而让拆卸变得更加便捷,这样,人们便可获取零部件并进行回收。

他表示,另一个解决方案就是再利用。

他说:“我们当前正在非常仔细研究的一件事情是,我们对某种产品能够了解到什么程度,以及跟踪钢厂在某个特定时间点会千亿哪种产品,然后这种产品在其生命周期中都会经历什么变化。”

与回收不同的是,此举具有一个重大优势:基本上没有任何二氧化碳排放。

冬暖夏凉

说到设计,另一个潜在的解决方案可谓是近在咫尺:从我们以前的建筑中吸取灵感。

耶鲁大学建筑生态系统中心(Yale University’s Center for Ecosystems in Architecture)的创始主任安娜•戴森说,例如,新英格兰的传统房屋都拥有南向窗户,这样便可以最大化地引入阳光,并减少冬天的黑暗时长。

她还表示,全球各地的房屋在传统上都会按照最适合气候的方式进行设计和建造,然而,“在20世纪期间,随着建筑越发依赖于廉价的化石燃料,人们在房屋的方位以及气候适配方面并未设定十分严格的要求。”

此外,为了管理室内温度,房屋的形状和尺寸都会匹配当地的气候。在潮湿地区,房屋设计会采用充足的通风和大坡度屋顶来提升空气的流通。在白天炎热夜晚寒冷的干旱地区,房屋较为宽敞而且都是浅色,以反射热量。这些原则,以及生物可降解材料的使用,例如木料、稻草、椰子壳和竹子,成为了戴森这类建筑师如今重新审视的理念。

当然,这里并没有一劳永逸的解决办法。戴森指出,房屋依然需要能源来照明和供热,而且首选清洁能源。目前我们面临的挑战是,不仅要让房屋能够适应未来100年的发展,同时还得寻找各种方式来改进那些已经矗立了一个世纪的老房子。

戴森说:“我们还有很长的路要走,但我们在设计方面还有很多文章可做。”(财富中文网)

译者:冯丰

审校:夏林

It's been called the "last mile" of decarbonization.

As companies and countries worldwide map out how they will hit net-zero emissions by 2050, some elements of the vast shift are relatively straightforward: Cars will go electric; power grids will adopt clean energy.

But when it comes to buildings, engineers and policymakers alike hit a hurdle: Even a house covered with solar panels is likely to contain concrete and steel—some of the most intractable sectors when it comes to emissions. To make truly low-carbon buildings, researchers say we must embrace breakthrough technology, from hydrogen to carbon capture, and explore new ways of designing concrete, industrial products, and even houses themselves.

The stakes are high. Between the energy they consume and their construction, buildings are responsible for nearly 40% of the world's emissions, according to the International Energy Agency. To truly produce a zero carbon house, office, or shop, every industry involved in its construction and maintenance must be decarbonized first, says Dabo Guan, a professor of climate change economics at University College London's Bartlett School of Construction and Project Management.

When buildings are constructed, "they trigger the whole economic supply chain," says Guan. "And the emissions of the supply chain are very big."

“Like making a cake”

When it comes to concrete, "the only thing we use more as humans is water," says Jeremy Gregory, executive director of MIT's Concrete Sustainability Hub.

At the heart of concrete is cement: the key binding agent that turns sand and water into one of the world's most ubiquitous materials. In 2019, the world produced roughly 4.1 billion tons of cement, according to the IEA. It's also extremely hard to decarbonize. Cement itself must be formed at extremely high temperatures and is the product of a chemical process that naturally produces carbon dioxide. Collectively, it is responsible for up to 8% of global emissions, says Gregory.

Because it's extremely difficult to use renewable energy to produce the energy intensity needed for ultrahigh temperatures, truly low-carbon cement will likely rely on carbon capture, storage, and utilization, which prevents CO2 from being released into the atmosphere, either by injecting it into the ground or—potentially—into the concrete itself.

There is also another approach that could help, says Gregory: diluting, or even replacing, the cement in concrete. These options already exist: The ancient Romans used volcanic ash as a binding agent to make concrete. But it's possible to use a large number of waste products, including fly ash—a by-product from coal plants. Some blends can reduce the carbon intensity by as much as 70% compared to conventional cement and will produce a product that's just as good.

It's "sort of like making a cake," says Gregory. "You can use whole wheat flour. It'll still look like a cake. It'll just taste a little bit different."

Reduce, reuse, recycle

Steel struggles with some of the same problems as concrete. Mainly, it must be produced at high temperatures, and, to a lesser degree, some CO2 also results from the process. Steel has one advantage—it can more easily be recycled—but that, too, has challenges. There is not enough to meet demand, and reprocessing requires energy, says Richard Curry, a program manager at Sustain, the Future Steel Manufacturing Research Hub based at the University of Swansea in Wales.

Logistically, recycling can be challenging and degrade the quality of the metal. As with concrete, the most feasible solutions are carbon capture, utilization, and storage—even if those are not yet commercially mainstream.

Embracing better design—from buildings to infrastructure to, yes, electric cars—to make them easier to disassemble so that their parts can be accessed and recycled could help, says Cameron Pleydell-Pearce, Sustain's deputy director.

Another option, he says, is reusing.

"One of the things that we're looking at in a very great level of detail is the degree to which we can understand which product and trace which product is coming out of a steel mill at a particular point, and then what happens to it as it goes through its life cycle," he says.

Unlike even recycling, that would offer a major advantage: It comes with almost no CO2 emissions at all.

Warm in winter, cool in summer

When it comes to design, there's another potential solution staring us in the face: drawing inspiration from what our buildings used to look like.

A traditional house in New England, for example, would have had south-facing windows, maximizing the sunshine and minimizing the darkness in winter, says Anna Dyson, the founding director of Yale University's Center for Ecosystems in Architecture.

Houses all over the world have traditionally been designed and built to best work with the climate, she adds, but "over the course of the 20th century, as buildings became more and more reliant on cheap fossil fuels, then it wasn't so required to be really, really careful about orientation and working with climate."

Also, to manage the indoor temperatures, houses were built in shapes and sizes that suited their climates. In humid locations, home designs included ample ventilation and steep roofs to enhance air flow. In arid climates with hot days and cold nights, houses were roomy and light-colored to reflect heat. Those principles, along with making use of biodegradable materials, from timber to straw to coconut husks and bamboo, are ideas that some architects like Dyson are now looking back to.

Of course there are no silver bullets. Houses still need energy for lights and heating, preferably clean energy, Dyson points out. And now we face the prospect of not just making houses that are suited to the next 100 years, but also finding ways to retrofit the ones that have already lasted a century.

"We've got a long way to go," says Dyson. "But we've got a lot that we can do with design."

最新:
  • qy113vip
  • 千亿体育app
活动
扫码打开财富Plus App
365bet官方吧网站登录bob体育ios客户端下载ballbet贝博网页版